Ethnic dental analysis of shovel and Carabelli’s traits in a Chinese population

John W. Hsu*
Pei L. Tsai†
Tin H. Hsiao†
Hong P. Chang‡
Li M. Lin§
Keh M. Liu†
Hsin S. Yu*
Donald Ferguson,

Abstract
Chinese populations differ from Caucasoids by having a high prevalence of shovel trait and a low prevalence of Carabelli’s trait. This study was conducted to investigate the association between the shovel and the Carabelli’s traits in a Chinese population. The research design investigated a Chinese population that resides in southern Taiwan. The ancestors of this Chinese population migrated to Taiwan from mainland China, mainly from Fukien and Kwangtung. The effects of sex and age on Carabelli’s trait were controlled in this investigation, as was the association between tooth size and Carabelli’s trait. Results show that males were more likely to have Carabelli’s trait expressed on teeth than females. The buccolingual diameter of Carabelli’s trait teeth was larger than that of teeth without the trait. After controlling for sex, age, and tooth size, the existence of the shovel trait increased the likelihood of having Carabelli’s trait by a factor of five and a half, which is a significant effect.

Key words: Dental traits, Chinese, Caucasoid, multivariate logistic regression.

Introduction
Shovel trait incisors and Carabelli’s trait molars are dental features commonly used to differentiate Chinese from Caucasoid populations (Fig. 1). Shovel or Carabelli’s traits have been used as critical indicators for several decades, and this has probably been because they are simply observed in both living and skeletal materials and they can be used to show major ethnic differences in dentition that was described by Lee and Goose in 1972. Two features of the Mongolid dental complex, namely a high frequency of shovel incisors and a low frequency of Carabelli’s trait molars, were reported by Dahlberg in 1951 and by Hanihara in 1968. Although it might have been hypothesized that shovel incisors repress the appearance of Carabelli’s traits, Tsai et al. found a preliminary positive association between these two dental traits in a Bunun aboriginal population. However, the real association between shovel and Carabelli’s traits has been obscure in other populations.

Shovel trait is a combination of a concave lingual surface and elevated marginal ridges enclosing a central fossa in the upper central incisor teeth. Carabelli’s traits are found on the lingual aspect of the mesiolingual cusp of the upper first molar teeth on which the traits may take the form of a pit, fissure or cusp. Few studies have examined the degree to which the existence of the shovel trait in the incisor teeth influences the Carabelli’s trait in the molar teeth, although dental inter-trait studies have been carried out before.
In order to decrease the possible population differences in the manifestation of Carabelli’s trait, this present investigation was limited to a Chinese population. The Chinese people who live in southern Taiwan are the descendants of Chinese mainlanders who migrated to Taiwan largely from Fukien and Kwangtung in the period after 1600.12 Before the migration, the aborigines had been already living in Taiwan. Besides reducing the impact of population differences, other possible factors, such as sex and tooth size, which might affect the value for Carabelli’s trait and might interfere with the association between the shovel trait and Carabelli’s trait, have to be considered. Although sex differences in the expression of Carabelli’s trait have been reported,13-17 other authors have found no significant male-female differences in Carabelli’s trait.18-22 To control for potential differences caused by dimorphism, sex was considered as a possible confounding variable in this study.

The association has been described between the increased maxillary molar tooth size and the occurrence of Carabelli’s trait.20,23 Tooth size is reported to be larger in Carabelli’s trait-positive than in Carabelli’s trait-negative molars.24 Because tooth size may be a confounding variable in the analysis of Carabelli’s trait, adjustments were made for tooth size. The present study investigated the statistical effects of confounding variables, such as demography and tooth size, on Carabelli’s trait in a Chinese population in southern Taiwan. After removing the effects of possible confounding factors, this analysis also investigated the extent to which the shovel trait might affect Carabelli’s trait in this Chinese population.

Materials and methods
Measurement acquisition

Two hundred and ninety-seven subjects participated in this study. In order to reduce the confounding effects of the admixture of race on Carabelli’s trait, subjects had to be members of the Chinese population in southern Taiwan. Tooth impressions were taken in rigid disposable trays and poured immediately in dental stone to prevent distortion. To control for the possible discrepancy between deciduous and permanent dentitions, this study was restricted to 12-15 year old adolescents. Two hundred and ninety-seven dental casts were used for morphological and metric inspections. Of this number, 280 could be appraised for upper right
first molar and upper right central incisor measurements. Seventeen casts were excluded due to inability to measure tooth size and traits. There was no significant deviation in demography between the participating group (280) and the non-participating group (17). In order to eliminate potential problems of asymmetry, analysis was limited to traits and measurements of the right side of the dentition. If a tooth was missing or could not be precisely measured due to the loss of measuring points through caries, restoration or attrition, the corresponding contralateral tooth was not used as a substitute.

Various patterns of Carabelli’s trait have been classified and contain (a) no evidence of Carabelli’s trait – smooth surface with the absence of pits or fissures, (b) pits or fissures, (c1) cusp without free tip, and (c2) cusp with free tip. Thereafter, more patterns of Carabelli’s trait have been described, and even intermediate forms have been included. The non-metrically categorical data of trait patterns have been dichotomized into two types, including the existence and the non-existence of Carabelli’s trait. The presence or absence of Carabelli’s trait was recorded for the upper right first molar. When there was any manifestation of the trait, cusp, fissure, or pit, the presence of Carabelli’s trait was coded.

Some classifications of the shovel trait have been suggested and include (a) shovel – enamel rim distinct with an enclosed well-developed fossa, (b) semishovel – enamel rim distinct but enclosed fossa shallow, (c) trace shovel – traces of enamel rim which can not be classed as semishovel, and (d) no shovel – no perceptible trace of rim or fossa. Upper right central incisor teeth were examined by using this system of grouping and the modified classifications. These categorical figures were also dichotomized into two groups, including the existence and the non-existence of shovel trait. The shovel trait-positive incisors were coded when rim or fossa could be noticed.

Tooth size of upper right first molars of permanent teeth for each dental cast was measured by a sliding electronic digital calliper with 0.01 mm resolution. Tooth size variables included mesiodistal and buccolingual diameters. The measurements of mesiodistal and buccolingual diameters followed Seipel’s and Moorrees et al. The mesiodistal diameter was measured as the greatest distance between the approximal surfaces of the crown with a sliding caliper parallel to the occlusal and vestibular surfaces of the crown. When a tooth was rotated or malposed in relation to the dental arch, the measurement was taken between the points on the approximal surface of the crown at which place it was judged that normal contact should have occurred with neighbouring teeth. Buccolingual diameter was measured as the greatest distance between the labial or buccal surface and the lingual surface of the tooth crown, measured with a sliding calliper held at right angles to the mesiodistal diameter.

To limit inter-observer errors, mesiodistal and buccolingual crown dimensions of upper right first molars were measured directly on the cast by a single well-trained examiner. A significant test-retest reliability (r>0.95, p<0.001) was found. Diameters were measured three times and the average value was recorded for each diameter. The morphological traits were classified independently by another examiner, whose incorrect percentage of trait classification was less than three per cent.

**Statistical analysis**

Each confounding variable was computed for means and proportions according to the teeth with versus the teeth without Carabelli’s trait. Multivariate logistic regression was used in this comparative dichotomy analysis between the two groups by using the SAS/STAT computer program. Logistic regression was employed which has become the standard method of analysis in cases where the dependent outcome variable, such as presence or absence of Carabelli’s trait, is dichotomous or discrete. Because of the possible variation of dental size and morphology, age was controlled for in this investigation. In addition to sex, the diameters of teeth were also controlled for in the analysis to explore the differences in Carabelli’s trait of upper right first molars between presence and absence of shovel trait of upper right central incisors. This logistic method enabled the comparison between presence and absence of the shovel trait for the differences in Carabelli’s trait, while controlling for the effects of independent variables such as sex, age, and size of upper right first molars simultaneously. Tests for inference allowed a type I error rate of 5 per cent. The odds risk and 95 per cent confidence interval of odds risk were calculated. Odds risk is a measure that shovel trait is associated with Carabelli’s trait. An upper and lower 95 per cent confidence limit of odds risk not containing the value of one was defined as a significant odds risk.

**Table 1. Confounding variables controlled in multivariate logistic regression in the Chinese**

<table>
<thead>
<tr>
<th>Variables</th>
<th>Carabelli’s trait (n=103)</th>
<th>No Carabelli’s trait (n=177)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (% male)</td>
<td>78.73</td>
<td>44.63</td>
</tr>
<tr>
<td>Age (mean years)</td>
<td>13.47</td>
<td>13.56</td>
</tr>
<tr>
<td>MD URM1 (mean mm)*</td>
<td>10.54</td>
<td>10.41</td>
</tr>
<tr>
<td>BL URM1 (mean mm)†</td>
<td>11.29</td>
<td>10.99</td>
</tr>
</tbody>
</table>

*MD URM1: Mesiodistal diameter of upper right first molar.
†BL URM1: Buccolingual diameter of upper right first molar.
Results

More than half (56 per cent) of the sample were male subjects. Of all participants, 36.8 per cent had Carabelli’s trait in the upper right first molars, and of male subjects, 49.7 per cent had this trait. However, only 20.3 per cent of female teeth had Carabelli’s trait. The means and proportions of confounding variables of teeth with versus the teeth without Carabelli’s trait are shown in Table 1. The coefficients and the significance of independent variables in multivariate logistic regression are shown in Table 2. Significant differences were found between males and females for Carabelli’s trait. A tooth exhibiting Carabelli’s trait was significantly more likely in males than in females (p<0.001). No age difference was observed between presence and absence of Carabelli’s trait.

The possible confounding variables that were controlled for in the analysis are shown in Tables 1 and 2. Regarding tooth size, the total studied sample had mean±standard deviation of mesiodistal and buccolingual diameters of 10.45±0.51 mm and 11.23±0.54 mm, respectively. After adjusting for the confounding variables, the mean buccolingual diameter of the tooth with Carabelli’s trait was significantly larger than that of the tooth without Carabelli’s trait (p<0.05). On the other hand, the mean mesiodistal diameter of the tooth with Carabelli’s trait was slightly larger than that of the tooth without Carabelli’s trait, but it was not statistically significant after adjusting for sex, age, and buccolingual diameters.

The presence of the shovel trait in the upper right central incisors predicted the existence of Carabelli’s trait in the upper right first molars five and a half times more often than the absence of the shovel trait did (odds risk, 5.51; 95 per cent confidence interval, 2.26-13.44; p<0.001) (Table 3). Of the non-shovel trait group in the Taiwan Chinese, only 11.8 per cent had Carabelli’s teeth. Carabelli’s trait teeth were found in 42.4 per cent of the shovel trait group.

Discussion

Quasi-continuous, or continuous variables have been used to treat non-metric dental traits in prior studies. Usually, the real trait expression intervals have been unequally classified into several categories, but equally continuous intervals have been assumed to apply. Further, incorrect percentages for several types of dental trait classifications have ranged from 22 per cent to 56 per cent. Finally, the classification criteria of Carabelli’s trait have been variably set into different categories by different authors. For example, the ‘pit’ feature has been given different values or degrees in different classifications. Some investigators have viewed ‘groove’ and ‘cusp’ as independent categories, but some have had categories for ‘cusp’ in contact with ‘groove’ or ‘cusp’ with no contact. Another method, assuming the threshold mechanism, has dichotomized the non-metric dental traits into present and absent groups to view dental traits as entities. On the basis of these prior studies, dichotomization reduces possible classification bias and has another trait entity significance. The present study found that Carabelli’s trait is sexually dimorphic in Taiwan Chinese. Similar findings have occurred elsewhere, but these are in contradiction with some other studies. It appears difficult to conclude that sex differences exist in Carabelli’s trait. However, it is noted that these previous studies are not completely comparable due to varying sample sizes and different methods of analysis. The effects of confounding variables such as mesiodistal and buccolingual diameter have been rarely removed. These methodological deficiencies

Table 2. Estimates and standard errors in multivariate logistic regression: Carabelli’s trait versus no Carabelli’s trait

<table>
<thead>
<tr>
<th>Factors</th>
<th>Log odds Estimate</th>
<th>Standard error</th>
<th>Statistical significance*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>1.21</td>
<td>0.37</td>
<td>†</td>
</tr>
<tr>
<td>Age (years)</td>
<td>-0.47</td>
<td>0.36</td>
<td>ns‡</td>
</tr>
<tr>
<td>MD URM1 (mm)§</td>
<td>0.56</td>
<td>0.39</td>
<td>ns‡</td>
</tr>
<tr>
<td>BL URM1 (mm), ¶</td>
<td>1.01</td>
<td>0.42</td>
<td>†</td>
</tr>
<tr>
<td>Presence of shovel trait</td>
<td>1.71</td>
<td>0.45</td>
<td>†</td>
</tr>
</tbody>
</table>

*Significant difference between with and without the Carabelli’s trait measurements.
†p<0.001.
‡Not significant, p>0.05.
§MD URM1: Mesiodistal diameter of upper right first molar.
¶BL URM1: Buccolingual diameter of upper right first molar.

Table 3. The association between shovel and Carabelli’s traits in the Chinese*

<table>
<thead>
<tr>
<th>Groups</th>
<th>Carabelli’s trait (n=103)</th>
<th>No Carabelli’s trait (n=177)</th>
<th>Odds risk</th>
<th>95% confidence interval</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shovel</td>
<td>97</td>
<td>132</td>
<td>5.51</td>
<td>2.26-13.44</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>No shovel</td>
<td>6</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Statistical significance was determined by logistic regression controlling for the effects of sex, age, as well as both mesiodistal and buccolingual diameters of upper right first molars. The non-shovel group was the control compared with the shovel group and the group of shovel trait with greater than grade 1.
in other investigations may have led to contradictory findings. Certainly such analytic shortcomings influenced the use of multivariate methods in the present analysis, which then identified the existence of significant sexual difference.

Among Taiwan Chinese, after adjusting for sex and age, significant differences are present in buccolinguinal, but not in mesiodistal diameters. Such differences have been observed elsewhere.24,46,47 De Terra44 and later Dahlberg48 suggested that Carabelli’s cusp is an adaptation that enlarged the occlusal surface of the first molars in the buccolinguinal dimension as compensation for evolutionary reduction in the length (mesiodistal diameter) of the maxillary molar row. Another study reported that Carabelli’s cusp is related to larger first molars overall, and not especially with an increase in the buccolinguinal diameter.49 The opinion from the evolutionary perspective has been that Carabelli’s trait might be a primitive structure that tends to disappear with molar reduction in all hominoid evolutionary lines. 24,46,47 A functional argument for the existence of Carabelli’s trait has been the proposal that it may be a structure that resists excessive biomechanical stresses on the first molar.48

The results of this Chinese population study show that smaller first molars tend to have fewer occurrences of Carabelli’s trait and, developmentally, Carabelli’s trait is a disappearing structure as the first molar becomes smaller in a Chinese population. That Carabelli’s trait serves a structural function needs further biomechanical experimentation to prove.

According to prior studies,2,3,32,49 shovel trait occurs almost universally, and occurs particularly frequently in the Chinese, Taiwan aborigines, Eskimos, American Indians, and Australian Aborigines. Carabelli’s trait is less commonly found in these populations.1 On the other hand, populations derived from Europe have a low frequency of shovel trait and a high frequency of Carabelli’s trait.1,32,50-52 The literature shows that Chinese and Caucasoid population frequencies differ remarkably in the expression of shovel trait on the upper right central incisor teeth and Carabelli’s trait on the upper right first molar.1,32,51 As a consequence of this, shovel and Carabelli’s traits have been regarded as dental markers of Chinese and Caucasoid ancestry. Understanding the real interaction between these two prominent dental markers is therefore of biological and anthropological importance.

Comparatively, little attention has been paid to the outcome of multivariate analyses of the influence of shovel trait on Carabelli’s trait, though many papers have examined dental traits in Chinese populations.1,32,50-55 By confining the present study to the Taiwan Chinese only, it can be shown that after adjustment, the presence of the shovel trait tends to increase the likelihood of Carabelli’s trait by a factor of five and a half. The authors found a positive impact of the shovel trait on Carabelli’s trait after proper data adjustment in a Chinese population which was similar to the positive interaction, using similar analytical method, between these two dental markers in a Bunun aboriginal population in the report by Tsai et al.,4 which has anticipated an analogous developmental relationship between shovel and Carabelli’s traits. Given the positive association found in the present study, the reduction of Carabelli’s trait is related to the reduction of shovel trait. Accordingly, it seems that the present study shows further evidence to support an analogous developmental relationship between these two dental traits. Moreover, the positive association between these two dental traits may be hypothesized as a common characteristic in the Mongoloid population that needs further studies.

Other models which include genetic and environmental factors for the manifestation of Carabelli’s trait have been reported.15,20,51 In addition to the environment, Tsai et al. reported that genes play a major role in the association between Carabelli’s and shovel traits.4 Therefore, the positive interaction between shovel and Carabelli’s traits in the Chinese population may be explained by a similar hypothesis. However, this assumption also needs to be verified with family studies. Although the generalization of the intensity of the effect of shovel trait on Carabelli’s trait seen in Taiwan Chinese to other populations may be limited, this study also promotes a method to investigate the association between shovel and Carabelli’s trait entities in other populations, which are of critical importance as well.

Acknowledgements

The authors are grateful to Dr S. Chen for his statistical advice in this study and also to Mr P. Hsu for his preparation of the materials and manuscript. This investigation was supported in part by a research grant from the Institute of Biological Research, National Science Council, Taipei, Taiwan.

References


Address for correspondence/reprints: John Wen-Chain Hsu, Kaohsiung Medical College, Kaohsiung, Taiwan 80708.